DocumentCode :
780336
Title :
Multidimensional Multiple-Order Complex Parametric Model Identification
Author :
Kouamé, Denis ; Girault, Jean-Marc
Author_Institution :
Univ. Paul Sabatier Toulouse 3, Toulouse
Volume :
56
Issue :
10
fYear :
2008
Firstpage :
4574
Lastpage :
4582
Abstract :
This paper presents a way to access both the multiple-order and parameters of a multidimensional complex number autoregressive (AR) model through matrix factorization. The principle of this technique consists of the transformation of the multidimensional model to a pseudo simple-input simple-output AR model, then performing factorization of the covariance matrix of the data. This factorization then leads to a recursive form of the parameter and order estimation. This paper makes two principal contributions. The first is a generalization of one dimensional factored form algorithm, and the second is that it makes it possible to access all the possible different orders and parameters of a multidimensional complex number AR model of any dimension, whereas classical approaches are limited to at most four-dimensional models. Computer simulation results are provided to illustrate the behavior of this method.
Keywords :
autoregressive processes; covariance matrices; matrix decomposition; parameter estimation; signal processing; computer simulation; covariance matrix; matrix factorization; multidimensional complex number autoregressive; multiple-order complex parametric model identification; order estimation; parameter estimation; Autoregressive; Model; Multidimensional; model; multidimensional; order; parameter;
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/TSP.2008.928088
Filename :
4558046
Link To Document :
بازگشت