DocumentCode :
780842
Title :
Intelligent Adaptive Backstepping Control System for Magnetic Levitation Apparatus
Author :
Lin, Faa-Jeng ; Teng, Li-Tao ; Shieh, Po-Huang
Author_Institution :
Dept. of Electr. Eng., Nat. Dong Hwa Univ., Hualien
Volume :
43
Issue :
5
fYear :
2007
fDate :
5/1/2007 12:00:00 AM
Firstpage :
2009
Lastpage :
2018
Abstract :
We propose an intelligent adaptive backstepping control system using a recurrent neural network (RNN) to control the mover position of a magnetic levitation apparatus to compensate for uncertainties, including friction force. First, we derive a dynamic model of the magnetic levitation apparatus. Then, we suggest an adaptive backstepping approach to compensate disturbances, including the friction force, occurring in the motion control system. To further increase the robustness of the magnetic levitation apparatus, we propose an RNN estimator for the required lumped uncertainty in the adaptive backstepping control system. We further propose an online parameter training methodology, derived by the gradient descent method, to increase the learning capability of the RNN. The effectiveness of the proposed control scheme has been verified by experiment. With the proposed adaptive backstepping control system using RNN, the mover position of the magnetic levitation apparatus possesses the advantages of good transient control performance and robustness to uncertainties for the tracking of periodic trajectories
Keywords :
adaptive control; friction; magnetic levitation; neurocontrollers; position control; recurrent neural nets; compensate disturbances; friction force; intelligent adaptive backstepping control system; magnetic levitation apparatus; motion control system; recurrent neural network; Adaptive control; Adaptive systems; Backstepping; Control systems; Force control; Intelligent control; Magnetic levitation; Programmable control; Recurrent neural networks; Uncertainty; Adaptive backstepping control; lumped uncertainty; magnetic levitation; recurrent neural network;
fLanguage :
English
Journal_Title :
Magnetics, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9464
Type :
jour
DOI :
10.1109/TMAG.2006.890325
Filename :
4156285
Link To Document :
بازگشت