DocumentCode :
780930
Title :
Magnetic characterization of perpendicular recording media
Author :
Wu, Jing ; Holloway, L. ; Laidler, H. ; O´Grady, K. ; Khizroev, S. ; Howard, J.K. ; Gustafson, R.W. ; Litvinov, D.
Author_Institution :
Dept. of Phys., York Univ., UK
Volume :
38
Issue :
4
fYear :
2002
fDate :
7/1/2002 12:00:00 AM
Firstpage :
1682
Lastpage :
1686
Abstract :
In this paper, we describe techniques for the magnetic characterization of perpendicular recording media. Such measurements made using traditional techniques, such as the vibrating sample magnetometry (VSM) and alternating gradient force magnetometer (AGFM), have to be corrected for the sample shape demagnetizing factor, which is often found not to be equal to -4π. For measurements other than the simple hysteresis loop, such as remanence curves, this correction must be carried out in real time and we describe the method by which this can be achieved and the process for achieving the correct demagnetization of perpendicular films prior to measurements of the isothermal remanent magnetization curve. A further complication is that real perpendicular media have a soft underlayer beneath the recording layer, which swamps and confuses signals from instruments such as VSM or AGFM. Hence, we describe the construction and use of a magnetooptical Kerr effect magnetometer, which does not penetrate significantly into the soft layer and enables the perpendicular layer to be measured independently. We describe the properties of a traditional alloy perpendicular medium and a Co-Pd multilayer system, which in the latter case exhibits multiple switching behavior. We also address the issue of the effect of the soft underlayer on the coupling in similar longitudinal films and find that the presence of the underlayer induces significant additional coupling effects that may well give rise to an increase in noise in recorded signals
Keywords :
Kerr magneto-optical effect; cobalt; demagnetisation; exchange interactions (electron); magnetic hysteresis; magnetic multilayers; magnetic recording noise; magnetic switching; magnetisation; magnetometers; palladium; perpendicular magnetic recording; remanence; Co-Pd; Co-Pd multilayer film; exchange coupling; hysteresis loop; isothermal remanent magnetization; magnetic characteristics; magnetooptical Kerr effect magnetometer; perpendicular recording medium; shape demagnetizing factor; signal noise; soft underlayer; switching field distribution; Demagnetization; Force measurement; Isothermal processes; Magnetic hysteresis; Magnetization; Magnetometers; Perpendicular magnetic recording; Remanence; Shape measurement; Vibration measurement;
fLanguage :
English
Journal_Title :
Magnetics, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9464
Type :
jour
DOI :
10.1109/TMAG.2002.1017756
Filename :
1017756
Link To Document :
بازگشت