DocumentCode :
781828
Title :
Evaluation of contact resistance for isotropic electrically conductive adhesives
Author :
Gaynes, Michael A. ; Lewis, Russell H. ; Saraf, Ravi F. ; Roldan, Judith M.
Author_Institution :
Assembly Process Design Group, IBM Corp., Endicott, NY, USA
Volume :
18
Issue :
2
fYear :
1995
fDate :
5/1/1995 12:00:00 AM
Firstpage :
299
Lastpage :
304
Abstract :
Electrically conductive adhesives are discussed and studied with ever-increasing interest as an alternative to solder interconnection in microelectronics circuit packaging. A similar level of scrutiny that is used to evaluate contact resistance performance for interconnections made with solder and separable connectors is necessary for electrically conductive adhesives. Experience with solder interconnection and separable connectors shows low initial contact resistance of less than 10 mΩ when bulk conductor material is minimized in the measurement scheme. Stability is typically determined to be less than a 5-10 mΩ change as a function of stress. The main intent of this study is to characterize the electrical contact resistance performance of joints made with isotropic electrically conductive adhesives. A copper comb pattern test vehicle was designed and fabricated using 0.25-mm thick lead frame material. The plating finishes that were applied to the copper substrate included a palladium alloy, gold, tin, and nickel. Test samples were made with several electrically conductive adhesives. Samples consisted of two comb patterns bonded to each other making a gang of 40 lap joints. Variables from circuit packaging such as coefficient of thermal expansion mismatches are purposely avoided in this study. Contact resistance measurements were made initially and as a function of time during environmental tests. Stresses included thermal cycling, thermal aging, and temperature and humidity conditioning. The stability of electrical contact resistance is shown to be influenced by both plating metallurgy and the conductive adhesive itself. Contact resistance equivalent to solder is possible with some electrically conductive adhesives on appropriate metallurgical finishes. Mechanically, adhesive joints are less robust than solder joints, and therefore care must be taken to eliminate or minimize the effects of mechanical loading
Keywords :
adhesion; ageing; conducting materials; contact resistance; environmental testing; joining processes; packaging; 10 mohm; adhesive joints; comb pattern test vehicle; contact resistance; environmental tests; humidity conditioning; isotropic electrically conductive adhesives; mechanical loading; microelectronics circuit packaging; plating finishes; plating metallurgy; thermal aging; thermal cycling; Conducting materials; Conductive adhesives; Connectors; Contact resistance; Copper; Electric resistance; Electrical resistance measurement; Integrated circuit interconnections; Packaging; Thermal stresses;
fLanguage :
English
Journal_Title :
Components, Packaging, and Manufacturing Technology, Part B: Advanced Packaging, IEEE Transactions on
Publisher :
ieee
ISSN :
1070-9894
Type :
jour
DOI :
10.1109/96.386265
Filename :
386265
Link To Document :
بازگشت