DocumentCode :
782370
Title :
A Unified Approach to Dual Gabor Windows
Author :
Werther, Tobias ; Matusiak, Ewa ; Eldar, Yonina C. ; Subbana, Nagesh K.
Author_Institution :
Fac. of Math., Univ. of Vienna
Volume :
55
Issue :
5
fYear :
2007
fDate :
5/1/2007 12:00:00 AM
Firstpage :
1758
Lastpage :
1768
Abstract :
In this paper, we describe a new method for studying the invertibility of Gabor frame operators. Our approach can be applied to both the continuous (on Rd) and the finite discrete setting. In the latter case, we obtain algorithms for directly computing the inverse of Gabor frame-type matrices equivalent to those known in the literature. The framework we propose can also be used to derive other (known) results in Gabor theory in a unified way such as the Zibulski-Zeevi representation. The approach we suggest is based on an adequate splitting of the twisted convolution, which, in turn, provides another twisted convolution on a finite cyclic group. By analogy with the twisted convolution of finite discrete signals, we derive a mapping between the sequence space and a matrix algebra which preserves the algebraic structure. In this way, the invertibility problem reduces to the analysis of finite matrices whose entries are sequences supported on corresponding cosets. Using Cramer´s rule and proving Wiener´s lemma for this special class of matrices, we obtain an invertibility criterion that can be applied to a variety of different settings. This alternative approach provides further insight into Gabor frames, as well as a unified framework for Gabor analysis
Keywords :
convolution; mathematical operators; matrix algebra; signal processing; Gabor analysis; Gabor frame operators; Gabor frame-type matrices; Zibulski-Zeevi representation; dual Gabor windows; finite discrete signals; twisted convolution; Convolution; Fourier transforms; Lattices; Matrices; Object recognition; Signal analysis; Signal mapping; Signal processing; Signal processing algorithms; Speech processing; Gabor frame operator; Janssen coefficients; Zak transform; Zibulski–Zeevi representation;
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/TSP.2006.890908
Filename :
4156434
Link To Document :
بازگشت