DocumentCode :
784243
Title :
DC and large-signal time-dependent electron transport in heterostructure devices: an investigation of the heterostructure barrier varactor
Author :
Jones, J. Robert ; Tait, Gregory B. ; Jones, Stephen H. ; Katzer, D. Scott
Author_Institution :
Dept. of Electr. Eng., Virginia Univ., Charlottesville, VA, USA
Volume :
42
Issue :
6
fYear :
1995
fDate :
6/1/1995 12:00:00 AM
Firstpage :
1070
Lastpage :
1080
Abstract :
The DC and large-signal time-dependent electron transport properties of Heterostructure Barrier Varactors (HBV) are investigated using a physical model which combines drift-diffusion current transport through the heterostructure bulk with thermionic and thermionic-field emission currents imposed at the abrupt heterointerfaces in a fully self-consistent manner. A fast and accurate hydrodynamic device simulator for generic unipolar InGaAs-InAlAs on InP, InGaAs-InP on InP, and GaAs-InGaAs-AlGaAs on GaAs has been developed based on this model. The experimentally observed current-voltage and capacitance-voltage characteristics of GaAs-AlGaAs and GaAs-InGaAs-AlGaAs are compared with the simulated results over a wide range of DC bias. Large-signal time-dependent simulations at a pump frequency of 100 GHz confirm the odd-harmonic operation of these devices and indicate that multiple barrier should provide efficient frequency multiplication, especially in high order frequency multipliers, broadband frequency triplers, and quasi-optical tripler arrays
Keywords :
field emission; frequency multipliers; millimetre wave diodes; millimetre wave frequency convertors; semiconductor device models; thermionic emission; varactors; 100 GHz; DC bias; DC electron transport; EHF; GaAs; GaAs-AlGaAs; GaAs-InGaAs-AlGaAs; InGaAs-InAlAs; InGaAs-InP; InP; MM-wave device; broadband frequency triplers; capacitance-voltage characteristics; current-voltage characteristics; drift-diffusion current transport; frequency multiplication; heterostructure barrier varactor; high order frequency multipliers; hydrodynamic device simulator; large-signal time-dependent electron transport; odd-harmonic operation; physical model; quasi-optical tripler arrays; thermionic-field emission currents; Capacitance-voltage characteristics; Electron emission; Frequency conversion; Hydrodynamics; Indium phosphide; Ohmic contacts; Photonic band gap; Semiconductor materials; Thermionic emission; Varactors;
fLanguage :
English
Journal_Title :
Electron Devices, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9383
Type :
jour
DOI :
10.1109/16.387239
Filename :
387239
Link To Document :
بازگشت