Title :
Confidentiality performance of spectral-phase-encoded optical CDMA
Author :
Shake, Thomas H.
Author_Institution :
Lincoln Lab., Massachusetts Inst. of Technol., Lexington, MA, USA
fDate :
4/1/2005 12:00:00 AM
Abstract :
Enhanced security has often been cited as an important benefit of optical code-division multiple-access (O-CDMA) signaling but has seldom been analyzed in detail. This paper presents a theoretical analysis of the degree of confidentiality that can be provided by spectral-phase-encoded O-CDMA. Two eavesdropping detector structures are presented that can theoretically break the confidentiality of spectral-phase-encoded signals by detecting the code words in use by a specific user. One of them, an optical beat detector, is quantitatively analyzed to determine the probability of correctly detecting user code words. The confidentiality of user signals is shown to be vulnerable to such a detector if an eavesdropper can isolate a single user signal with a sufficiently high signal-to-noise ratio (SNR). At lower SNRs, combining multiple bits is shown to dramatically increase the probability of an eavesdropper correctly detecting user code words; even for codes long enough to strain implementation capabilities (e.g., 2048 code elements), the probability of correct detection is shown to rise from negligibly low values to virtually 100% by the combining of less than 100 transmitted bits at the eavesdropper´s receiver.
Keywords :
code division multiple access; codes; encoding; optical receivers; telecommunication security; code word detection; confidentiality; confidentiality performance; correct detection probability; eavesdropping detector; enhanced security; optical CDMA; optical beat detector; optical code-division multiple-access; spectral-phase-encoded CDMA; Communication system security; Cryptography; Encoding; Multiaccess communication; Optical detectors; Optical receivers; Performance analysis; Signal analysis; Signal detection; Signal to noise ratio; Code-division multiple access (CDMA); communication system security; optical communication;
Journal_Title :
Lightwave Technology, Journal of
DOI :
10.1109/JLT.2005.844504