Title :
Fast Multidimensional Entropy Estimation by
-d Partitioning
Author :
Stowell, Dan ; Plumbley, Mark D.
Author_Institution :
Centre for Digital Music, Queen Mary Univ. of London, London
fDate :
6/1/2009 12:00:00 AM
Abstract :
We describe a nonparametric estimator for the differential entropy of a multidimensional distribution, given a limited set of data points, by a recursive rectilinear partitioning. The estimator uses an adaptive partitioning method and runs in Theta(N log N) time, with low memory requirements. In experiments using known distributions, the estimator is several orders of magnitude faster than other estimators, with only modest increase in bias and variance.
Keywords :
adaptive estimation; entropy; multidimensional signal processing; nonparametric statistics; recursive estimation; adaptive partitioning method; fast multidimensional differential entropy estimation; k-d partitioning; multidimensional signal processing; nonparametric estimator; recursive rectilinear partitioning; Context; Entropy; Genetics; Image processing; Multidimensional signal processing; Multidimensional systems; Probability density function; Random variables; Recursive estimation; State estimation; Entropy; estimation; multidimensional signal processing; multidimensional systems;
Journal_Title :
Signal Processing Letters, IEEE
DOI :
10.1109/LSP.2009.2017346