• DocumentCode
    78978
  • Title

    Fast Computation of Rotation-Invariant Image Features by an Approximate Radial Gradient Transform

  • Author

    Takacs, Gabor ; Chandrasekhar, V. ; Tsai, Shauhyuarn Sean ; Chen, D. ; Grzeszczuk, R. ; Girod, B.

  • Author_Institution
    Microsoft Corp., Sunnyvale, CA, USA
  • Volume
    22
  • Issue
    8
  • fYear
    2013
  • fDate
    Aug. 2013
  • Firstpage
    2970
  • Lastpage
    2982
  • Abstract
    We present the radial gradient transform (RGT) and a fast approximation, the approximate RGT (ARGT). We analyze the effects of the approximation on gradient quantization and histogramming. The ARGT is incorporated into the rotation-invariant fast feature (RIFF) algorithm. We demonstrate that, using the ARGT, RIFF extracts features 16× faster than SURF while achieving a similar performance for image matching and retrieval.
  • Keywords
    approximation theory; feature extraction; gradient methods; image matching; image retrieval; transforms; ARGT; RGT; RIFF feature extraction; SURF; approximate radial gradient transform; gradient quantization approximation; histogramming; image matching; image retrieval; rotation-invariant image features; Approximation methods; Computational modeling; Histograms; Image matching; Quantization; Transforms; Vectors; Computer vision; feature representation; invariants; real-time systems; signal processing; Algorithms; Image Enhancement; Image Interpretation, Computer-Assisted; Information Storage and Retrieval; Pattern Recognition, Automated; Reproducibility of Results; Sensitivity and Specificity; Subtraction Technique;
  • fLanguage
    English
  • Journal_Title
    Image Processing, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1057-7149
  • Type

    jour

  • DOI
    10.1109/TIP.2012.2230011
  • Filename
    6363603