DocumentCode :
78978
Title :
Fast Computation of Rotation-Invariant Image Features by an Approximate Radial Gradient Transform
Author :
Takacs, Gabor ; Chandrasekhar, V. ; Tsai, Shauhyuarn Sean ; Chen, D. ; Grzeszczuk, R. ; Girod, B.
Author_Institution :
Microsoft Corp., Sunnyvale, CA, USA
Volume :
22
Issue :
8
fYear :
2013
fDate :
Aug. 2013
Firstpage :
2970
Lastpage :
2982
Abstract :
We present the radial gradient transform (RGT) and a fast approximation, the approximate RGT (ARGT). We analyze the effects of the approximation on gradient quantization and histogramming. The ARGT is incorporated into the rotation-invariant fast feature (RIFF) algorithm. We demonstrate that, using the ARGT, RIFF extracts features 16× faster than SURF while achieving a similar performance for image matching and retrieval.
Keywords :
approximation theory; feature extraction; gradient methods; image matching; image retrieval; transforms; ARGT; RGT; RIFF feature extraction; SURF; approximate radial gradient transform; gradient quantization approximation; histogramming; image matching; image retrieval; rotation-invariant image features; Approximation methods; Computational modeling; Histograms; Image matching; Quantization; Transforms; Vectors; Computer vision; feature representation; invariants; real-time systems; signal processing; Algorithms; Image Enhancement; Image Interpretation, Computer-Assisted; Information Storage and Retrieval; Pattern Recognition, Automated; Reproducibility of Results; Sensitivity and Specificity; Subtraction Technique;
fLanguage :
English
Journal_Title :
Image Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1057-7149
Type :
jour
DOI :
10.1109/TIP.2012.2230011
Filename :
6363603
Link To Document :
بازگشت