DocumentCode :
789807
Title :
Orthogonal least squares regression with tunable kernels
Author :
Chen, S. ; Wang, X.X. ; Brown, D.J.
Author_Institution :
Sch. of Electron. & Comput. Sci., Univ. of Southampton, UK
Volume :
41
Issue :
8
fYear :
2005
fDate :
4/14/2005 12:00:00 AM
Firstpage :
484
Lastpage :
486
Abstract :
A novel technique is proposed to construct sparse regression models based on the orthogonal least squares method with tunable kernels. The proposed technique tunes the centre vector and diagonal covariance matrix of individual regressors by incrementally minimising the training mean square error using a guided random search algorithm, and it offers a state-of-the-art method for constructing very sparse models that generalise well.
Keywords :
covariance matrices; least squares approximations; mean square error methods; regression analysis; sparse matrices; centre vector; covariance matrix; mean square error; orthogonal least squares regression; random search algorithm; sparse models; sparse regression models; state-of-the-art method; tunable kernels;
fLanguage :
English
Journal_Title :
Electronics Letters
Publisher :
iet
ISSN :
0013-5194
Type :
jour
DOI :
10.1049/el:20050265
Filename :
1425360
Link To Document :
بازگشت