DocumentCode :
791975
Title :
Intensity estimation from shot-noise data
Author :
Sequeira, Raúl E. ; Gubner, John A.
Author_Institution :
Dept. of Electr. & Comput. Eng., Wisconsin Univ., Madison, WI, USA
Volume :
43
Issue :
6
fYear :
1995
fDate :
6/1/1995 12:00:00 AM
Firstpage :
1527
Lastpage :
1531
Abstract :
The estimation of the intensity function of a Poisson-driven shot-noise process is addressed using a regularization technique, where the data is modeled as a signal term plus a signal-dependent noise term. A new data-based method for selecting a pair of regularization parameters is presented and compared with the minimum unbiased risk method. The detail in the intensity function can be recovered by both methods, but the new method does a better job at suppressing spurious oscillations
Keywords :
parameter estimation; shot noise; signal sampling; stochastic processes; Poisson-driven shot-noise process; data-based method; intensity function estimation; minimum unbiased risk method; regularization parameters; regularization technique; sampled data; shot-noise data; signal term; signal-dependent noise term; spurious oscillations suppression; Expectation-maximization algorithms; Image reconstruction; Image restoration; Integral equations; Military computing; Nonlinear filters; Random variables; Signal processing; Smoothing methods; Statistics;
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/78.388871
Filename :
388871
Link To Document :
بازگشت