DocumentCode :
794599
Title :
Deterministic Learning for Maximum-Likelihood Estimation Through Neural Networks
Author :
Cervellera, Cristiano ; Macció, Danilo ; Muselli, Marco
Author_Institution :
ligenti per I´´Autom., ConsiglioIstituto di Studi sui Sist. Intel- ligenti per I´´Autom., Genoa
Volume :
19
Issue :
8
fYear :
2008
Firstpage :
1456
Lastpage :
1467
Abstract :
In this paper, a general method for the numerical solution of maximum-likelihood estimation (MLE) problems is presented; it adopts the deterministic learning (DL) approach to find close approximations to ML estimator functions for the unknown parameters of any given density. The method relies on the choice of a proper neural network and on the deterministic generation of samples of observations of the likelihood function, thus avoiding the problem of generating samples with the unknown density. Under mild assumptions, consistency and convergence with favorable rates to the true ML estimator function can be proved. Simulation results are provided to show the good behavior of the algorithm compared to the corresponding exact solutions.
Keywords :
learning (artificial intelligence); maximum likelihood estimation; neural nets; ML estimator functions; deterministic learning; maximum-likelihood estimation; neural networks; Deterministic learning (DL); discrepancy; maximum-likelihood estimation (MLE); variation; Algorithms; Artificial Intelligence; Computer Simulation; Likelihood Functions; Models, Statistical; Neural Networks (Computer); Pattern Recognition, Automated;
fLanguage :
English
Journal_Title :
Neural Networks, IEEE Transactions on
Publisher :
ieee
ISSN :
1045-9227
Type :
jour
DOI :
10.1109/TNN.2008.2000577
Filename :
4564193
Link To Document :
بازگشت