Title :
SVC dynamic analytical model
Author :
Jovcic, Dragan ; Pahalawaththa, Nalin ; Zavahir, Mohamed ; Hassan, Heba A.
Author_Institution :
Sch. of Electr. & Mech. Eng., Ulster Univ., Newtownabbey, UK
Abstract :
This paper presents a linear state-space model of a static VAr compensator. The model consists of three individual subsystem models: an AC system, a SVC model, and a controller model, linked together through d-q transformation. The issue of nonlinear susceptance-voltage term and coupling with a static frame of reference is resolved using an artificial rotating susceptance and linearizing its dependence on firing angle. The model is implemented in MATLAB and verified against PSCAD/EMTDC in the time and frequency domains. The verification demonstrates very good system gain accuracy in a wide frequency range f < 150 Hz, whereas the phase angle shows somewhat inferior matching above 25 Hz. It is concluded that the model is sufficiently accurate for many control design applications and practical stability issues. The model´s use is demonstrated by analyzing the dynamic influence of the PLL gains, where the eigenvalue movement shows that reductions in gains deteriorate system stability.
Keywords :
EMTP; eigenvalues and eigenfunctions; electric admittance; frequency-domain analysis; phase locked loops; power engineering computing; power system dynamic stability; state-space methods; static VAr compensators; time-domain analysis; AC system; MATLAB; PLL gains; PSCAD/EMTDC; SVC dynamic analytical model; artificial rotating susceptance; control design applications; controller model; coupling; d-q transformation; eigenvalue movement; firing angle; frequency domain; gains reduction; inferior matching; linear state-space model; nonlinear susceptance-voltage term; phase angle; power system dynamic stability; stability; state space methods; static VAr compensator; subsystem models; time domain; Analytical models; Control design; Couplings; EMTDC; Frequency domain analysis; MATLAB; Mathematical model; Nonlinear dynamical systems; PSCAD; Static VAr compensators;
Journal_Title :
Power Delivery, IEEE Transactions on
DOI :
10.1109/TPWRD.2003.817796