Title :
Symmetry Sensitivities of Derivative-of-Gaussian Filters
Author :
Griffin, Lewis D. ; Lillholm, Martin
Author_Institution :
Dept. of Comput. Sci., Univ. Coll. London, London, UK
fDate :
6/1/2010 12:00:00 AM
Abstract :
We consider the measurement of image structure using linear filters, in particular derivative-of-Gaussian (DtG) filters, which are an important model of V1 simple cells and widely used in computer vision, and whether such measurements can determine local image symmetry. We show that even a single linear filter can be sensitive to a symmetry, in the sense that specific responses of the filter can rule it out. We state and prove a necessary and sufficient, readily computable, criterion for filter symmetry-sensitivity. We use it to show that the six filters in a second order DtG family have patterns of joint sensitivity which are distinct for 12 different classes of symmetry. This rich symmetry-sensitivity adds to the properties that make DtG filters well-suited for probing local image structure, and provides a set of landmark responses suitable to be the foundation of a nonarbitrary system of feature categories.
Keywords :
Gaussian processes; computer vision; digital filters; feature extraction; DtG filters; computer vision; derivative-of-Gaussian filters; feature categories; filter symmetry-sensitivity; image structure measurement; joint sensitivity; linear filters; nonarbitrary system; Analog computers; Biological system modeling; Biology computing; Computer vision; Fourier transforms; Nonlinear filters; Particle measurements; Pattern analysis; Performance evaluation; Statistics; Group theory; invariance; pattern analysis;
Journal_Title :
Pattern Analysis and Machine Intelligence, IEEE Transactions on
DOI :
10.1109/TPAMI.2009.91