DocumentCode :
798593
Title :
A fuzzy-syntactic approach to allograph modeling for cursive script recognition
Author :
Parizeau, Marc ; Plamondon, Rejean
Author_Institution :
Dept. de Genie Electr., Laval Univ., Que., Canada
Volume :
17
Issue :
7
fYear :
1995
fDate :
7/1/1995 12:00:00 AM
Firstpage :
702
Lastpage :
712
Abstract :
This paper presents an original method for creating allograph models and recognizing them within cursive handwriting. This method concentrates on the morphological aspect of cursive script recognition. It uses fuzzy-shape grammars to define the morphological characteristics of conventional allographs which can be viewed as basic knowledge for developing a writer independent recognition system. The system uses no linguistic knowledge to output character sequences that possibly correspond to an unknown cursive word input. The recognition method is tested using multi-writer cursive random letter sequences. For a test dataset containing a handwritten cursive text 600 characters in length written by ten different writers, average character recognition rates of 84.4% to 91.6% are obtained, depending on whether only the best character sequence output of the system is considered or if the best of the top 10 is accepted. These results are achieved without any writer-dependent tuning. The same dataset is used to evaluate the performance of human readers. An average recognition rate of 96.0% was reached, using ten different readers, presented with randomized samples of each writer. The worst reader-writer performance was 78.3%. Moreover, results show that system performances are highly correlated with human performances
Keywords :
character recognition; fuzzy set theory; grammars; graph theory; image segmentation; mathematical morphology; allograph modeling; cursive handwriting; cursive script recognition; fuzzy-shape grammars; fuzzy-syntactic approach; human readers; morphological characteristics; multi-writer cursive random letter sequences; writer independent recognition system; Books; Character recognition; Computational modeling; Computer Society; Computer displays; Computer simulation; Handwriting recognition; Humans; Ink; System testing;
fLanguage :
English
Journal_Title :
Pattern Analysis and Machine Intelligence, IEEE Transactions on
Publisher :
ieee
ISSN :
0162-8828
Type :
jour
DOI :
10.1109/34.391412
Filename :
391412
Link To Document :
بازگشت