Title :
X pinch plasma development as a function of wire material and current pulse parameters
Author :
Shelkovenko, T.A. ; Pikuz, S.A. ; Sinars, D.B. ; Chandler, K.M. ; Hammer, D.A.
Author_Institution :
Lebedev (P.N.) Phys. Inst., Moscow, Russia
fDate :
4/1/2002 12:00:00 AM
Abstract :
An X pinch plasma is produced using two or more fine metal wires arranged so that they cross and touch at a single point, in the form of an "X," as the load of a pulsed power generator (pulser). X pinches produce very bright, small, short-lived sources of X-rays in the 1-10 keV range. The X-ray source size, pulse duration and photon energy spectra depend upon the wire material and diameter, and the current waveform from the pulser. Those with ∼1 μm source size can be used as point sources of X-ray radiation for point-projection radiography with high spatial resolution. We report experiments with a variety of different wire materials, including Al, Ti, Mo, W, among others, all of which produced high resolution images, and all of which have subnanosecond X-ray pulses for X-rays ≥3 keV. X pinches produced using all of these materials had common development stages. However, the wire material and the rate of rise of the current pulse influenced the details of the dynamics, leading to variation in the timing of the X-ray burst(s) relative to the start of the current pulse. For a given wire material, wire diameter had only a small effect on X-ray emission timing. Final X pinch neck implosion speeds as high as 66-75 μm/ns were estimated.
Keywords :
X-ray production; pinch effect; plasma diagnostics; plasma transport processes; pulsed power technology; 1 to 10 keV; Al; Mo; Ti; W; X pinch neck implosion speeds; X pinch plasma production; X-ray radiation sources; X-ray radiography; X-ray sources; X-ray spectroscopy; current pulse parameters; current pulse rise rate; current waveform; development stages; high resolution images; metal wires; photon energy spectra; point sources; point-projection radiography; pulse duration; pulsed power generator; pulser; short-lived sources; subnanosecond X-ray pulses; wire diameter; wire material; Image resolution; Plasma materials processing; Plasma sources; Plasma x-ray sources; Power generation; Pulse generation; Radiography; Spatial resolution; Timing; Wire;
Journal_Title :
Plasma Science, IEEE Transactions on
DOI :
10.1109/TPS.2002.1024291