DocumentCode :
800193
Title :
On the convergence of the conjugate gradient method in Hilbert space
Author :
Kawamura, Kei ; Volz, Ryan
Author_Institution :
University of Michigan, Ann Arbor, MI, USA
Volume :
14
Issue :
3
fYear :
1969
fDate :
6/1/1969 12:00:00 AM
Firstpage :
296
Lastpage :
297
Abstract :
A proof of convergence of the conjugate gradient method of Hestenes and Stiefel in a Hilbert space setting for Fréchet differentiable functionals is given. The proof is based upon uniform continuity of the gradient and is similar to that used by Goldstein for the steepest descent method.
Keywords :
Gradient methods; Hilbert spaces; Convergence; Gradient methods; Hilbert space; Iterative methods; Laplace equations; Nonlinear equations; Topology; Vectors;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.1969.1099164
Filename :
1099164
Link To Document :
بازگشت