DocumentCode :
800618
Title :
Fundamental Limitations on the Variance of Estimated Parametric Models
Author :
Rojas, Cristian R. ; Welsh, James S. ; Agüero, Juan C.
Author_Institution :
ACCESS Linnaeus Center, KTH-R. Inst. of Technol., Stockholm
Volume :
54
Issue :
5
fYear :
2009
fDate :
5/1/2009 12:00:00 AM
Firstpage :
1077
Lastpage :
1081
Abstract :
In this technical note fundamental integral limitations are derived on the variance of estimated parametric models, for both open and closed loop identification. As an application of these results we show that, for multisine inputs, a well known asymptotic (in model order) variance expression provides upper bounds on the actual variance of the estimated models for finite model orders. The fundamental limitations established here give rise to a dasiawater-bedpsila effect, which is illustrated in an example.
Keywords :
closed loop systems; control system synthesis; linear systems; open loop systems; parameter estimation; transfer functions; closed loop identification; estimated parametric models; finite model orders; open loop identification; single-input single-output linear system; Australia; Computer science; Control systems; Estimation theory; Feedback control; Frequency; Information theory; Parametric statistics; System identification; Upper bound; Single-input single-output (SISO);
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.2008.2010981
Filename :
4907213
Link To Document :
بازگشت