DocumentCode :
800822
Title :
Information-theoretic matching of two point sets
Author :
Wang, Yue ; Woods, Kelvin ; McClain, Maxine
Author_Institution :
Dept. of Electr. Eng. & Comput. Sci., Catholic Univ. of America, Washington, DC, USA
Volume :
11
Issue :
8
fYear :
2002
fDate :
8/1/2002 12:00:00 AM
Firstpage :
868
Lastpage :
872
Abstract :
This paper describes the theoretic roadmap of least relative entropy matching of two point sets. The novel feature is to align two point sets without needing to establish explicit point correspondences. The recovery of transformational geometry is achieved using a mixture of principal axes registrations, whose parameters are estimated by minimizing the relative entropy between the two point distributions and using the expectation-maximization algorithm. We give evidence of the optimality of the method and we then evaluate the algorithm´s performance in both rigid and nonrigid image registration cases.
Keywords :
image registration; iterative methods; maximum likelihood estimation; minimum entropy methods; expectation-maximization algorithm; finite normal mixture; information-theoretic matching; least relative entropy matching; nonrigid image registration; optimality; point sets; principal axes registrations; rigid image registration; theoretic roadmap; transformational geometry; Biomedical imaging; Entropy; Expectation-maximization algorithms; Geometry; Helium; Image registration; Information theory; Kelvin; Matrix decomposition; Parameter estimation;
fLanguage :
English
Journal_Title :
Image Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1057-7149
Type :
jour
DOI :
10.1109/TIP.2002.801120
Filename :
1025161
Link To Document :
بازگشت