• DocumentCode
    800910
  • Title

    Quotient FCMs-a decomposition theory for fuzzy cognitive maps

  • Author

    Zhang, Jian Ying ; Liu, Zhi-Qiang ; Zhou, Sanming

  • Author_Institution
    Dept. of Comput. Sci. & Software Eng., Univ. of Melbourne, Vic., Australia
  • Volume
    11
  • Issue
    5
  • fYear
    2003
  • Firstpage
    593
  • Lastpage
    604
  • Abstract
    In this paper, we introduce a decomposition theory for fuzzy cognitive maps (FCM). First, we partition the set of vertices of an FCM into blocks according to an equivalence relation, and by regarding these blocks as vertices we construct a quotient FCM. Second, each block induces a natural sectional FCM of the original FCM, which inherits the topological structure as well as the inference from the original FCM. In this way, we decompose the original FCM into a quotient FCM and some sectional FCM. As a result, the analysis of the original FCM is reduced to the analysis of the quotient and sectional FCM, which are often much smaller in size and complexity. Such a reduction is important in analyzing large-scale FCM. We also propose a causal algebra in the quotient FCM, which indicates that the effect that one vertex influences another in the quotient depends on the weights and states of the vertices along directed paths from the former to the latter. To illustrate the process involved, we apply our decomposition theory to university management networks. Finally, we discuss possible approaches to partitioning an FCM and major concerns in constructing quotient FCM. The results represented in this paper provide an effective framework for calculating and simplifying causal inference patterns in complicated real-world applications.
  • Keywords
    algebra; cognitive systems; fuzzy set theory; causal algebra; causal inference patterns; decomposition theory; equivalence relation; fuzzy cognitive maps; inference; natural sectional FCM; quotient FCM; topological structure; university management networks; vertex set partitioning; Algebra; Australia Council; Computer science; Fuzzy cognitive maps; Intelligent networks; Large-scale systems; Mathematics; Software engineering; State-space methods; Statistics;
  • fLanguage
    English
  • Journal_Title
    Fuzzy Systems, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1063-6706
  • Type

    jour

  • DOI
    10.1109/TFUZZ.2003.817836
  • Filename
    1235987