DocumentCode :
801401
Title :
A transformation technique for optimal control problems with a state variable inequality constraint
Author :
Jacobson, David H. ; Lele, Milind M.
Author_Institution :
Hardvard University, Cambridge, MA, USA
Volume :
14
Issue :
5
fYear :
1969
fDate :
10/1/1969 12:00:00 AM
Firstpage :
457
Lastpage :
464
Abstract :
A slack variable is used to transform an optimal control problem with a scalar control and a scalar inequality constraint on the state variables into an unconstrained problem of higher dimension. It is shown that, for a p th order constraint, the p th time derivative of the slack variable becomes the new control variable. The usual Pontryagin principle or Lagrange multiplier rule gives necessary conditions of optimality. There are no discontinuities in the adjoint variables. A feature of the transformed problem is that any nominal control function produces a feasible trajectory. The optimal trajectory of the transformed problem exhibits singular arcs which correspond, in the original constrained problem, to arcs which lie along the constraint boundary.
Keywords :
Optimal control; Cost function; Differential equations; Gradient methods; H infinity control; Jacobian matrices; Lagrangian functions; Mathematical analysis; NASA; Optimal control;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.1969.1099283
Filename :
1099283
Link To Document :
بازگشت