Title :
Microphysical characterization of microwave Radar reflectivity due to volcanic ash clouds
Author :
Marzano, Frank Silvio ; Vulpiani, Gianfranco ; Rose, William I.
Author_Institution :
Dept. of Electron. Eng., Univ. "La Sapienza", Rome, Italy
Abstract :
Ground-based microwave radar systems can have a valuable role in volcanic ash cloud monitoring as evidenced by available radar imagery. Their use for ash cloud detection and quantitative retrieval has been so far not fully investigated. In order to do this, a forward electromagnetic model is set up and examined taking into account various operating frequencies such as S-, C-, X-, and Ka-bands. A dielectric and microphysical characterization of volcanic vesicular ash is carried out. Particle size-distribution (PSD) functions are derived both from the sequential fragmentation-transport (SFT) theory of pyroclastic deposits, leading to a scaled-Weibull PSD, and from more conventional scaled-Gamma PSD functions. Best fitting of these theoretical PSDs to available measured ash data at ground is performed in order to determine the value of the free PSD parameters. The radar backscattering from spherical-equivalent ash particles is simulated up to Ka-band and the accuracy of the Rayleigh scattering approximation is assessed by using an accurate ensemble particle scattering model. A classification scheme of ash average concentration and particle size is proposed and a sensitivity study of ash radar backscattering to model parameters is accomplished. A comparison with C-band radar signatures is finally illustrated and discussed.
Keywords :
Weibull distribution; aerosols; ash; atmospheric techniques; backscatter; clouds; gamma distribution; microwave measurement; remote sensing by radar; volcanology; C-band; Gamma particle size distribution; Ka-band; Rayleigh scattering; S-band; Weibull particle size distribution; X-band; ash cloud detection; dielectric characterization; forward electromagnetic model; ground-based microwave radar systems; microphysical characterization; microwave radar reflectivity; particle scattering model; pyroclastic deposits; radar backscattering; radar imagery; radar remote sensing; radar signature; sequential fragmentation-transport theory; spherical-equivalent ash particles; volcanic ash cloud monitoring; volcanic eruption; volcanic vesicular ash; Backscatter; Clouds; Dielectrics; Electromagnetic modeling; Frequency; Monitoring; Radar detection; Radar imaging; Reflectivity; Volcanic ash; Ash clouds; microwave radars; radar remote sensing; volcanic eruption;
Journal_Title :
Geoscience and Remote Sensing, IEEE Transactions on
DOI :
10.1109/TGRS.2005.861010