DocumentCode :
802329
Title :
Applications of a simplified multidimensional stochastic approximation algorithm
Author :
Elliott, D.F. ; Sworder, D.D.
Author_Institution :
North American Rockwell Corporation, Anaheim, CA, USA
Volume :
15
Issue :
1
fYear :
1970
fDate :
2/1/1970 12:00:00 AM
Firstpage :
101
Lastpage :
104
Abstract :
A stochastic analog of the Newton-Raphson gradient search method may be used under certain conditions to accelerate convergence of a stochastic approximation algorithm to a local minimum. The method depends upon an iterative technique for determining the Hessian matrix. This paper presents a simplified algorithm which in some design problems sharply reduces the calculations required to determine the matrix. An application of this method to an attitude controller is explored in detail.
Keywords :
Nonlinear systems, stochastic; Optimal stochastic control; Space-vehicle control; Stochastic optimal control; Stochastic systems, nonlinear; Acceleration; Algorithm design and analysis; Approximation algorithms; Attitude control; Convergence; Iterative algorithms; Iterative methods; Multidimensional systems; Search methods; Stochastic processes;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.1970.1099369
Filename :
1099369
Link To Document :
بازگشت