DocumentCode :
802484
Title :
Irreducibility of dynamical equation realizations of sets of differential equations
Author :
Chen, Chi-tsong
Author_Institution :
State University of New York, Stony Brook, NY, USA
Volume :
15
Issue :
1
fYear :
1970
fDate :
2/1/1970 12:00:00 AM
Firstpage :
131
Lastpage :
131
Abstract :
The irreducibilities of dynamical equation realizations of sets of linear time-invariant differential equations D(p)y(t) = N(p)u(t) are studied. It is demonstrated that a realization of D(p)y(t) = N(p)u(t) can be irreducible only if the degree of the determinant of D(s) is equal to the degree of the rational matrix D^{-1}(s)N(s) .
Keywords :
Linear time-invariant (LTI) systems; Minimal realizations; Automatic control; Control systems; Differential equations; Kalman filters; Laplace equations; Output feedback; Polynomials; State feedback; Transfer functions;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.1970.1099384
Filename :
1099384
Link To Document :
بازگشت