DocumentCode :
804731
Title :
Full-diversity, high-rate space-time block codes from division algebras
Author :
Sethuraman, B.A. ; Rajan, B. Sundar ; Shashidhar, V.
Author_Institution :
Dept. of Math., California State Univ., Northridge, CA, USA
Volume :
49
Issue :
10
fYear :
2003
Firstpage :
2596
Lastpage :
2616
Abstract :
We present some general techniques for constructing full-rank, minimal-delay, rate at least one space-time block codes (STBCs) over a variety of signal sets for arbitrary number of transmit antennas using commutative division algebras (field extensions) as well as using noncommutative division algebras of the rational field Q embedded in matrix rings. The first half of the paper deals with constructions using field extensions of Q. Working with cyclotomic field extensions, we construct several families of STBCs over a wide range of signal sets that are of full rank, minimal delay, and rate at least one appropriate for any number of transmit antennas. We study the coding gain and capacity of these codes. Using transcendental extensions we construct arbitrary rate codes that are full rank for arbitrary number of antennas. We also present a method of constructing STBCs using noncyclotomic field extensions. In the later half of the paper, we discuss two ways of embedding noncommutative division algebras into matrices: left regular representation, and representation over maximal cyclic subfields. The 4×4 real orthogonal design is obtained by the left regular representation of quaternions. Alamouti´s (1998) code is just a special case of the construction using representation over maximal cyclic subfields and we observe certain algebraic uniqueness characteristics of it. Also, we discuss a general principle for constructing cyclic division algebras using the nth root of a transcendental element and study the capacity of the STBCs obtained from this construction. Another family of cyclic division algebras discovered by Brauer (1933) is discussed and several examples of STBCs derived from each of these constructions are presented.
Keywords :
algebra; block codes; diversity reception; matrix algebra; space-time codes; transmitting antennas; Alamouti´s code; STBC; code capacity; coding gain; commutative division algebras; cyclic division algebras; cyclotomic field extensions; full-diversity space-time block codes; full-rank space-time block codes; high-rate space-time block codes; left regular representation; matrix rings; maximal cyclic subfields; minimal-delay space-time block codes; multiple-antenna wireless communication; noncommutative division algebras; quaternions; real orthogonal design; signal sets; transcendental element; transmit antennas; Algebra; Block codes; Delay; Global communication; Information theory; Mutual information; Quaternions; Symmetric matrices; Transmitting antennas; Wireless communication;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2003.817831
Filename :
1237138
Link To Document :
بازگشت