• DocumentCode
    805212
  • Title

    Random codes: minimum distances and error exponents

  • Author

    Barg, Alexander ; Forney, G. David, Jr.

  • Volume
    48
  • Issue
    9
  • fYear
    2002
  • fDate
    9/1/2002 12:00:00 AM
  • Firstpage
    2568
  • Lastpage
    2573
  • Abstract
    Minimum distances, distance distributions, and error exponents on a binary-symmetric channel (BSC) are given for typical codes from Shannon´s random code ensemble and for typical codes from a random linear code ensemble. A typical random code of length N and rate R is shown to have minimum distance NδGV(2R), where δGV(R) is the Gilbert-Varshamov (GV) relative distance at rate R, whereas a typical linear code (TLC) has minimum distance NδGV(R). Consequently, a TLC has a better error exponent on a BSC at low rates, namely, the expurgated error exponent.
  • Keywords
    channel coding; linear codes; random codes; BSC; Gilbert-Varshamov relative distance; Shannon´s random code ensemble; binary-symmetric channel; distance distributions; error exponents; minimum distances; random linear code ensemble; Binary codes; Channel capacity; Code standards; Computer errors; Entropy; Equations; Information theory; Linear code;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/TIT.2002.800480
  • Filename
    1027785