DocumentCode :
805376
Title :
Analytical approach to changepoint detection in Laplacian noise
Author :
Wu, M. ; Fitzgerald, William J.
Author_Institution :
Dept. of Eng., Cambridge Univ., UK
Volume :
142
Issue :
3
fYear :
1995
fDate :
6/1/1995 12:00:00 AM
Firstpage :
174
Lastpage :
180
Abstract :
The paper presents an analytical method using the Bayesian inference framework for the identification of time-series discontinuities, i.e. changepoints, in impulsive Laplacian noise. Exact expressions for the posterior density of the changepoint positions and the associated Bayesian model evidence are given for DC step changes. The performance of the analytical approach is compared to that predicted by a Gaussian assumption to the noise statistics and Markov chain Monte Carlo methods
Keywords :
Bayes methods; Markov processes; Monte Carlo methods; noise; probability; signal detection; statistical analysis; time series; Bayesian inference framework; DC step changes; Gaussian assumption; Laplacian noise; Markov chain Monte Carlo method; analytical method; changepoint detection; impulsive noise; noise statistics; posterior density; time-series discontinuities identification;
fLanguage :
English
Journal_Title :
Vision, Image and Signal Processing, IEE Proceedings -
Publisher :
iet
ISSN :
1350-245X
Type :
jour
DOI :
10.1049/ip-vis:19951919
Filename :
393295
Link To Document :
بازگشت