Title :
A fuzzy clustering neural network architecture for multifunction upper-limb prosthesis
Author :
Karlik, Bekir ; Tokhi, M. Osman ; Alci, Musa
Author_Institution :
Dept. of Comput. Eng., Bahrain Univ., Isa Town, Bahrain
Abstract :
Accurate and computationally efficient means of classifying surface myoelectric signals has been the subject of considerable research effort in recent years. The aim of this paper is to classify myoelectric signals using new fuzzy clustering neural network (NN) architectures to control multifunction prostheses. This paper presents a comparative study of the classification accuracy of myoelectric signals using multilayered perceptron NN using back-propagation, conic section function NN, and new fuzzy clustering NNs (FCNNs). The myoelectric signals considered are used in classifying six upper-limb movements: elbow flexion, elbow extension, wrist pronation and wrist supination, grasp, and resting. The results suggest that FCNN can generalize better than other NN algorithms and help the user learn better and faster. This method has the potential of being very efficient in real-time applications.
Keywords :
artificial limbs; backpropagation; biomechanics; electromyography; fuzzy neural nets; medical signal processing; multilayer perceptrons; conic section function; elbow extension; elbow flexion; fuzzy clustering neural network architecture; grasp; multifunction upper-limb prosthesis; real-time applications; resting; surface myoelectric signals classification; upper-limb movements; wrist pronation; wrist supination; Computer architecture; Elbow; Fuzzy control; Fuzzy neural networks; Multilayer perceptrons; Muscles; Neural networks; Neural prosthesis; Pattern recognition; Wrist; Algorithms; Electromyography; Equipment Failure Analysis; Fuzzy Logic; Humans; Joint Prosthesis; Movement; Muscle Contraction; Muscle, Skeletal; Neural Networks (Computer); Pattern Recognition, Automated; Prosthesis Design; Upper Extremity;
Journal_Title :
Biomedical Engineering, IEEE Transactions on
DOI :
10.1109/TBME.2003.818469