Title :
Rotation-invariant multiresolution texture analysis using Radon and wavelet transforms
Author :
Jafari-Khouzani, Kourosh ; Soltanian-Zadeh, Hamid
Author_Institution :
Radiol. Image Anal. Lab., Henry Ford Health Syst., Detroit, MI, USA
fDate :
6/1/2005 12:00:00 AM
Abstract :
A new rotation-invariant texture-analysis technique using Radon and wavelet transforms is proposed. This technique utilizes the Radon transform to convert the rotation to translation and then applies a translation-invariant wavelet transform to the result to extract texture features. A k-nearest neighbors classifier is employed to classify texture patterns. A method to find the optimal number of projections for the Radon transform is proposed. It is shown that the extracted features generate an efficient orthogonal feature space. It is also shown that the proposed features extract both of the local and directional information of the texture patterns. The proposed method is robust to additive white noise as a result of summing pixel values to generate projections in the Radon transform step. To test and evaluate the method, we employed several sets of textures along with different wavelet bases. Experimental results show the superiority of the proposed method and its robustness to additive white noise in comparison with some recent texture-analysis methods.
Keywords :
AWGN; Radon transforms; feature extraction; image classification; image resolution; image texture; Radon transform; additive white noise; feature extraction; rotation-invariant multiresolution texture analysis; translation-invariant wavelet transform; wavelet transform; Additive white noise; Data mining; Feature extraction; Hidden Markov models; Image texture analysis; Laboratories; Noise robustness; Radiology; Wavelet analysis; Wavelet transforms; Radon transform; rotation invariance; texture analysis; wavelet transform; Algorithms; Artificial Intelligence; Cluster Analysis; Image Enhancement; Image Interpretation, Computer-Assisted; Imaging, Three-Dimensional; Information Storage and Retrieval; Pattern Recognition, Automated; Reproducibility of Results; Sensitivity and Specificity; Signal Processing, Computer-Assisted;
Journal_Title :
Image Processing, IEEE Transactions on
DOI :
10.1109/TIP.2005.847302