DocumentCode :
808970
Title :
A parallel algebraic multigrid solver for fast magnetic edge-element analyses
Author :
Mifune, Takeshi ; Iwashita, Takeshi ; Shimasaki, Masaaki
Author_Institution :
Dept. of Electr. Eng., Kyoto Univ., Japan
Volume :
41
Issue :
5
fYear :
2005
fDate :
5/1/2005 12:00:00 AM
Firstpage :
1660
Lastpage :
1663
Abstract :
This paper presents a parallel algebraic multigrid (AMG) solver for linear systems of equations arising in magnetic finite edge-element analyses. To parallelize the smoothing process, which consumes most of the computational costs of the AMG algorithm, we apply multicolor (MC) ordering to the symmetric Gauss-Seidel (SGS) method. Advantages of MC ordering are: 1) that the number of processors employed does not affect the convergence of the approximate solution and 2) that only the information of the coefficient matrix is utilized to parallelize the smoother. The numerical results show that the developed solver achieves sufficient scalability in magnetic finite edge-element analyses.
Keywords :
computational electromagnetics; finite element analysis; iterative methods; magnetic fields; microprocessor chips; parallel algorithms; parallel machines; coefficient matrix; linear systems equations; magnetic finite edge-element analyses; multicolor ordering; parallel algebraic multigrid solver; parallel processing; smoothing process; symmetric Gauss-Seidel method; Character generation; Computational efficiency; Concurrent computing; Integral equations; Linear systems; Magnetic analysis; Magnetostatics; Saturation magnetization; Smoothing methods; Sparse matrices; Algebraic multigrid (AMG); edge-element; finite-element (FE) methods; multicolor (MC) ordering; parallel processing;
fLanguage :
English
Journal_Title :
Magnetics, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9464
Type :
jour
DOI :
10.1109/TMAG.2005.846097
Filename :
1430934
Link To Document :
بازگشت