DocumentCode :
810075
Title :
Spectral analysis of periodically gapped data
Author :
Larsson, Erik G. ; Jian Li
Author_Institution :
Dept. of Electr. & Comput. Eng., Florida Univ., Gainesville, FL, USA
Volume :
39
Issue :
3
fYear :
2003
fDate :
7/1/2003 12:00:00 AM
Firstpage :
1089
Lastpage :
1097
Abstract :
We devise novel, interpolation-free, and computationally tractable extensions of the spectral analysis methods Capon and APES (amplitude and phase estimation) to periodically gapped data. Our methods are based on the observation that periodically gapped data usually have a structure that supports estimation of a relatively large number of covariance lags. The large signal-to-noise-ratio (SNR) behavior of the new algorithms is discussed, and numerical examples are provided to illustrate their performance.
Keywords :
amplitude estimation; phase estimation; radar signal processing; spectral analysis; synthetic aperture radar; APES; Capon; amplitude estimation; computationally tractable extensions; covariance lags; periodically gapped data; phase estimation; signal-to-noise-ratio; spectral analysis; synthetic aperture radar; Adaptive filters; Discrete Fourier transforms; Image analysis; Phase estimation; Robust stability; Signal to noise ratio; Spectral analysis; Synthetic aperture radar; Time series analysis; Yield estimation;
fLanguage :
English
Journal_Title :
Aerospace and Electronic Systems, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9251
Type :
jour
DOI :
10.1109/TAES.2003.1238761
Filename :
1238761
Link To Document :
بازگشت