DocumentCode :
810207
Title :
Markov decision Processes with fractional costs
Author :
Ren, Zhiyuan ; Krogh, Bruce H.
Author_Institution :
Signal Electron. & Embedded Syst. Lab., Gen. Electr. Global Res. Center, Niskayuna, NY, USA
Volume :
50
Issue :
5
fYear :
2005
fDate :
5/1/2005 12:00:00 AM
Firstpage :
646
Lastpage :
650
Abstract :
Certain methods for constructing embedded Markov decision processes (MDPs) lead to performance measures that are the ratio of two long-run averages. For such MDPs with finite state and action spaces and under an ergodicity assumption, this note presents algorithms for computing optimal policies based on policy iterations, linear programming, value iterations and Q-learning.
Keywords :
Markov processes; iterative methods; linear programming; Q-learning; embedded Markov decision processes; ergodicity assumption; fractional costs; linear programming; optimal policy computation; policy iterations; value iterations; Cost function; Embedded system; Linear programming; Probability; Q factor; State-space methods; Fractional costs; Markov decision processes;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.2005.846520
Filename :
1431043
Link To Document :
بازگشت