DocumentCode :
810719
Title :
A graphical test for checking the stability of a linear time-invariant feedback system
Author :
Callier, Frank M. ; Desoer, Charles A.
Author_Institution :
University of California, Berkeley, CA, USA and Belgian National Fund for Scientific Research, Brussels, Belgium
Volume :
17
Issue :
6
fYear :
1972
fDate :
12/1/1972 12:00:00 AM
Firstpage :
773
Lastpage :
780
Abstract :
A graphical test is developed for checking the condition \\inf_{\\Re s \\geq 0}|1 + k\\hat{g}(s)| > 0 where k is a nonzero real constant and \\hat{g} is the sum of a finite number of right-half plane poles and the Laplace transform of an integrable function plus a series of delayed impulses. As a conseqence, 1 + k\\hat{g} is, in \\Re s \\geq 0 , asymptotic to an almost periodic function, say \\hat{f} , for |s| \\rightarrow \\infty . Theorem 1 gives a necessary and sufficient condition involving the curve {\\hat{f}(j\\omega )|\\omega \\in R} to ensure that \\inf_{\\Re s \\geq 0} |\\hat{f}(s)| > 0 ; Corollary 1 gives a corresponding graphical test. Theorem 2 and Corollary 2 give a necessary and sufficient condition involving the curve {1 + K\\hat{g}(j\\omega )|\\omega \\in R} and a graphical test to ensure \\inf_{\\Re s \\geq 0}| + k\\hat{g}(s)| > 0 , a condition that guarantees the Lpstability of the feedback system for any p in [1,\\infty ] .
Keywords :
Linear systems, time-invariant continuous-time; Stability; Algebra; Convolution; Delay; Feedback; Impulse testing; Laboratories; Laplace equations; Stability; System testing; Transfer functions;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.1972.1100180
Filename :
1100180
Link To Document :
بازگشت