DocumentCode :
810950
Title :
Improving the predictions of the circle criterion by combining quadratic forms
Author :
Power, H.M. ; Tsoi, A.C.
Author_Institution :
University of Salford, Salford, England
Volume :
18
Issue :
1
fYear :
1973
fDate :
2/1/1973 12:00:00 AM
Firstpage :
65
Lastpage :
67
Abstract :
By using a Lyapunov function which consists of different quadratic forms in various sectors of the ( u, (du/d\\tau ) ) plane, the prediction of the circle criterion that the null solution of (d^{2}u/d\\tau ^{2}) + 2(du/d\\tau ) + f(\\tau , u, (du/d\\tau ))\\cdotp u = 0 is asymptotically stable for 0 \\leq \\alpha < f(\\cdotp) < \\beta , with \\beta = (\\sqrt {\\alpha } + 2)^{2} , is improved to \\beta = [{frac{(\\sqrt {\\alpha } + 1)^{2} + 1 + \\sqrt {(\\sqrt {\\alpha } + 1)^{4} + 2 (\\sqrt {\\alpha } + 1)^{2} + 5}}{2}}^{frac{1}{2}} + 1 ]^{2} .
Keywords :
Asymptotic stability; Circle stability criterion; Lyapunov functions; Nonlinear systems, time-varying; Time-varying systems, nonlinear; Algebra; Equations; Lyapunov method;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.1973.1100204
Filename :
1100204
Link To Document :
بازگشت