DocumentCode :
813049
Title :
Superresolution reconstruction through object modeling and parameter estimation
Author :
Haacke, E. Mark ; Liang, Zhi-Pei ; Izen, Steven H.
Author_Institution :
Case Western Reserve Univ., Cleveland, OH, USA
Volume :
37
Issue :
4
fYear :
1989
fDate :
4/1/1989 12:00:00 AM
Firstpage :
592
Lastpage :
595
Abstract :
A method based on object modeling and parameter estimation is proposed to achieve superresolution reconstruction. An efficient method for solving for the model parameters is given that uses linear prediction theory and linear least squares fitting. Reconstruction results from simulated and real magnetic resonance data are also presented to demonstrate its capability for Gibbs ringing reduction and resolution enhancement.<>
Keywords :
least squares approximations; parameter estimation; picture processing; Gibbs ringing reduction; image restoration; linear least squares fitting; linear prediction theory; magnetic resonance data; object modeling; parameter estimation; resolution enhancement; superresolution reconstruction; Biomedical imaging; Entropy; Fourier transforms; Image reconstruction; Iterative algorithms; Parameter estimation; Physics; Signal processing algorithms; Spatial resolution; Tomography;
fLanguage :
English
Journal_Title :
Acoustics, Speech and Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
0096-3518
Type :
jour
DOI :
10.1109/29.17545
Filename :
17545
Link To Document :
بازگشت