DocumentCode :
813383
Title :
Inner algorithm test for controllability and observability
Author :
Jury, E.I.
Author_Institution :
University of California, Berkeley, CA, USA
Volume :
18
Issue :
6
fYear :
1973
fDate :
12/1/1973 12:00:00 AM
Firstpage :
682
Lastpage :
683
Abstract :
In this note it is shown how the double triangularization algorithm developed for computing inners determinants can be adapted to test the controllability matrix ( B,AB,.., A^{n-1}B ) and observability matrix ( C^{T},A^{T}C^{T},...,(A^{T})^{n-1}C^{T} ) to have rank of " n ." The controllability and observability conditions are shown to be equivalent to n^{2} \\times n(n + l - 1 ) and n(n + l\´ - 1) \\times n^{2} innerwise matrices to be nonsingular (i.e., to have a rank n2).
Keywords :
Controllability; Determinants; Linear time-invariant (LTI) systems; Observability; Argon; Control systems; Controllability; Feedback; Heuristic algorithms; Linear systems; Observability; System testing;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.1973.1100436
Filename :
1100436
Link To Document :
بازگشت