DocumentCode :
813681
Title :
Assembly of nanodevices with carbon nanotubes through nanorobotic manipulations
Author :
Fukuda, Toshio ; Arai, Fumihito ; Dong, Lixin
Author_Institution :
Dept. of Micro Syst. Eng., Nagoya Univ., Japan
Volume :
91
Issue :
11
fYear :
2003
fDate :
11/1/2003 12:00:00 AM
Firstpage :
1803
Lastpage :
1818
Abstract :
Properties and potential applications of carbon nanotubes are summarized by emphasizing the aspects of nanoelectronics and nanoelectromechanical systems (NEMS). The main technologies for the assembly of nanodevices through nanomanipulations with scanning probe microscopes and nanorobotic manipulators are overviewed, focusing on that of nanotubes. Key techniques for nanoassembly include the preparation of nano building blocks and property characterization of them, the positioning of the building blocks with nanometer-scale resolution, and the connection of them. Nanorobotic manipulations, which are characterized by multiple degrees of freedom (DOFs) with both position and orientation control, independently actuated multiprobes, and a real-time observation system, are one of the most promising technologies for assembling complex nanodevices in three-dimensional space. With a nano laboratory, a prototype nanomanufacturing system based on a 16-DOF nanorobotic manipulation system, the assembly of nanodevices with multiwalled carbon nanotubes are presented. Nanotube-based building blocks are prepared by directly picking up, in situ property characterization, destructive fabrication, and shape modifications. Kinds of nanotube junctions, the fundamental elements for both nanoelectronics and NEMS, are constructed by positioning the building blocks together under the real-time observation with a field-emission scanning electron microscope, connecting them with naturally existing van der Waals forces, electron-beam-induced deposition, or mechanochemical bonding.
Keywords :
carbon nanotubes; microassembling; micromanipulators; nanotechnology; nanotube devices; scanning probe microscopy; C; carbon nanotube; electron beam induced deposition; field-emission scanning electron microscopy; mechanochemical bonding; multiple degrees of freedom; nanodevice assembly; nanoelectromechanical system; nanoelectronics; nanomanufacturing system; nanorobotic manipulator; nanotube junction; scanning probe microscope; van der Waals force; Assembly systems; Carbon nanotubes; Laboratories; Microscopy; Nanoelectromechanical systems; Nanoelectronics; Position control; Probes; Real time systems; Space technology;
fLanguage :
English
Journal_Title :
Proceedings of the IEEE
Publisher :
ieee
ISSN :
0018-9219
Type :
jour
DOI :
10.1109/JPROC.2003.818334
Filename :
1240072
Link To Document :
بازگشت