Title :
Calibration of MEMS strain sensors fabricated on silicon: theory and experiments
Author :
Hautamaki, Charles ; Cao, Li ; Zhou, Jia ; Mantell, Susan C. ; Kim, Tae Song
Author_Institution :
Dept. of Mech. Eng., Univ. of Minnesota, Minneapolis, MN, USA
Abstract :
A calibration technique for measuring MEM´s strain sensor performance is presented. For resistance based sensors, calibration entails determining a relationship between change in resistance of the sensor and strain (the gauge factor). A modification to the standard calibration method employed for metal foil, resistance strain gauges is presented. The approach entails constructing two nearly identical test specimens: a specimen with the MEM´s sensor mounted with adhesive and a specimen with a strain gauge on silicon mounted with adhesive. Data from the strain gauge specimen provide the basis for evaluating the strain at the sensor. Test data are presented which show that strain at the wafer is 52% to 55% of the strain applied to the specimen. A theoretical basis for this strain transfer relationship is presented. Finally, a dimensionless geometry factor, based on shear lag theory, is derived. As the sensor cross section (width and length) and thickness changes, the strain transfer between the specimen and sensor vary linearly with the geometry factor. This result emphasizes the importance in considering the overall sensor geometry when employing semiconductor strain gauges.
Keywords :
calibration; elemental semiconductors; microsensors; silicon; strain gauges; MEMS strain sensor; Si; adhesive mounting; calibration technique; gauge factor; geometry factor; metal foil; resistance strain gauge; semiconductor; shear lag; silicon wafer; Calibration; Capacitive sensors; Geometry; Mechanical engineering; Micromechanical devices; Polymers; Silicon; Strain measurement; Testing; Wafer bonding;
Journal_Title :
Microelectromechanical Systems, Journal of
DOI :
10.1109/JMEMS.2003.817887