DocumentCode
815685
Title
Accuracy improvement using a modified Gauss-quadrature for integral methods in electromagnetics
Author
Schlemmer, E. ; Steffan, J. ; Rucker, W.M. ; Richter, K.R.
Author_Institution
Inst. for Fundamentals & Theory in Electr. Eng., Graz Univ., of Technol., Austria
Volume
28
Issue
2
fYear
1992
fDate
3/1/1992 12:00:00 AM
Firstpage
1755
Lastpage
1758
Abstract
A Gaussian quadrature technique for evaluating shape-function-boundary-element kernel produce integrals over three-dimensional isoparametric boundary elements is presented. The procedure allows the integration of singular kernels of O (1/r ) on curved surfaces. The integration of the normal derivative of Green´s function is also possible. Integrals which exist in the sense of Cauchy principal values are dealt with using the addition-subtraction technique. The accuracy of the numerical integration scheme is compared with that of the double exponential formula and the subdivision technique. Some examples show the effectiveness of the procedure
Keywords
Green´s function methods; boundary-elements methods; electromagnetic fields; Cauchy principal values; Green´s function; addition-subtraction technique; curved surfaces; double exponential formula; electromagnetics; integral methods; modified Gauss-quadrature; shape-function-boundary-element kernel produce integrals; subdivision technique; three-dimensional isoparametric boundary elements; Boundary element methods; Gaussian processes; Green´s function methods; Integral equations; Interpolation; Jacobian matrices; Kernel; Polynomials; Shape; Tin;
fLanguage
English
Journal_Title
Magnetics, IEEE Transactions on
Publisher
ieee
ISSN
0018-9464
Type
jour
DOI
10.1109/20.124044
Filename
124044
Link To Document