• DocumentCode
    815685
  • Title

    Accuracy improvement using a modified Gauss-quadrature for integral methods in electromagnetics

  • Author

    Schlemmer, E. ; Steffan, J. ; Rucker, W.M. ; Richter, K.R.

  • Author_Institution
    Inst. for Fundamentals & Theory in Electr. Eng., Graz Univ., of Technol., Austria
  • Volume
    28
  • Issue
    2
  • fYear
    1992
  • fDate
    3/1/1992 12:00:00 AM
  • Firstpage
    1755
  • Lastpage
    1758
  • Abstract
    A Gaussian quadrature technique for evaluating shape-function-boundary-element kernel produce integrals over three-dimensional isoparametric boundary elements is presented. The procedure allows the integration of singular kernels of O(1/r) on curved surfaces. The integration of the normal derivative of Green´s function is also possible. Integrals which exist in the sense of Cauchy principal values are dealt with using the addition-subtraction technique. The accuracy of the numerical integration scheme is compared with that of the double exponential formula and the subdivision technique. Some examples show the effectiveness of the procedure
  • Keywords
    Green´s function methods; boundary-elements methods; electromagnetic fields; Cauchy principal values; Green´s function; addition-subtraction technique; curved surfaces; double exponential formula; electromagnetics; integral methods; modified Gauss-quadrature; shape-function-boundary-element kernel produce integrals; subdivision technique; three-dimensional isoparametric boundary elements; Boundary element methods; Gaussian processes; Green´s function methods; Integral equations; Interpolation; Jacobian matrices; Kernel; Polynomials; Shape; Tin;
  • fLanguage
    English
  • Journal_Title
    Magnetics, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9464
  • Type

    jour

  • DOI
    10.1109/20.124044
  • Filename
    124044