DocumentCode :
816150
Title :
Temperature and substrate-impedance dependence of noise figure of monolithic RF inductors on silicon
Author :
Lin, Yo-Sheng
Author_Institution :
Dept. of Electr. Eng., Nat. Chi-Nan Univ., Puli, Taiwan
Volume :
26
Issue :
6
fYear :
2005
fDate :
6/1/2005 12:00:00 AM
Firstpage :
397
Lastpage :
400
Abstract :
In this letter, we analyze the effects of temperature (from -50°C to 200°C) and substrate impedance on the noise figure (NF) and quality factor (Q-factor) performances of monolithic RF inductors on silicon. The results show a 0.75 dB (from 0.98 to 0.23 dB) reduction in minimum NF (NFmin) at 8 GHz, an 86.1% (from 15.1 to 28.1) increase in maximum Q-factor (Qmax), and a 4.8% (from 16.5 to 17.3 GHz) improvement in self-resonant frequency (fSR) were obtained if post-process of proton implantation had been done. This means the post-process of proton implantation is effective in improving the NF and Q-factor performances of inductors on silicon mainly due to the reduction of eddy current loss in the silicon substrate. In addition, it was found that NF increases with increasing temperature but show a reverse behavior within a higher frequency range. This phenomenon can be explained by the positive temperature coefficients of the series metal resistance (Rs), the parallel substrate resistances (Rsub1 and Rsub2), and the resistance Rs1 of the substrate transformer loop. The present analyzes are helpful for RF designers to design less temperature-sensitive high-performance fully on-chip low-noise-amplifiers (LNAs) and voltage-controlled-oscillators (VCOs) for single-chip receiver front-end applications.
Keywords :
Q-factor; eddy current losses; electric impedance; inductors; microwave devices; silicon; -50 to 200 C; 0.23 dB; 17.3 GHz; 8 GHz; eddy current loss; monolithic RF inductors; noise figure; parallel substrate resistance; positive temperature coefficients; proton implantation; quality factor; self-resonant frequency; series metal resistance; silicon substrate; spiral inductor; substrate transformer loop; substrate-impedance dependence; temperature effects; Impedance; Inductors; Noise figure; Noise measurement; Performance analysis; Protons; Q factor; Radio frequency; Silicon; Temperature dependence; Noise figure; quality (; spiral inductor; substrate impedance; temperature;
fLanguage :
English
Journal_Title :
Electron Device Letters, IEEE
Publisher :
ieee
ISSN :
0741-3106
Type :
jour
DOI :
10.1109/LED.2005.848099
Filename :
1432911
Link To Document :
بازگشت