DocumentCode :
816702
Title :
Automatic Identification of Impairments Using Support Vector Machine Pattern Classification on Eye Diagrams
Author :
Skoog, Ronald A. ; Banwell, Thomas C. ; Gannett, Joel W. ; Habiby, Sarry F. ; Pang, Marcus ; Rauch, Michael E. ; Toliver, Paul
Author_Institution :
Appl. Res., Telcordia Technol., Red Bank, NJ
Volume :
18
Issue :
22
fYear :
2006
Firstpage :
2398
Lastpage :
2400
Abstract :
We have demonstrated powerful new techniques for identifying the optical impairments causing the degradation of an optical channel. We use machine learning and pattern classification techniques on eye diagrams to identify the optical impairments. These capabilities can enable the development of low-cost optical performance monitors having significant diagnostic capabilities
Keywords :
learning (artificial intelligence); optical fibre communication; pattern classification; support vector machines; telecommunication channels; telecommunication computing; eye diagrams; machine learning; optical impairment identification; pattern classification; support vector machine; Degradation; Machine learning; Monitoring; Optical character recognition software; Optical computing; Pattern classification; Signal analysis; Signal processing; Support vector machine classification; Support vector machines; Machine learning; optical performance monitoring (OPM); pattern recognition;
fLanguage :
English
Journal_Title :
Photonics Technology Letters, IEEE
Publisher :
ieee
ISSN :
1041-1135
Type :
jour
DOI :
10.1109/LPT.2006.886146
Filename :
4012069
Link To Document :
بازگشت