Title :
Coupled-Magnetic Filters With Adaptive Inductance Cancellation
Author :
Lymar, Daria S. ; Neugebauer, Timothy C. ; Perreault, David J.
Author_Institution :
Beth Israel Deaconness Med. Center, Boston, MA
Abstract :
Conventional filter circuits suffer from a number of limitations, including performance degradation due to capacitor parasitic inductance and the size and cost of magnetic elements. Coupled-magnetic filters have been developed that provide increased filter order with a single magnetic component, but also suffer from parasitic inductance in the filter shunt path due to imperfectly-controlled coupling of the magnetics. In this paper, we introduce a new approach to coupled-magnetic filters that overcomes these limitations. Filter sensitivity to variations in coupling is overcome by adaptively tuning the magnetic circuit for minimum rms ripple performance with feedback based on the sensed filter output ripple. This active control enables much greater robustness to manufacturing and environmental variations than is possible in the conventional "zero-ripple" coupled-magnetic approach, while preserving its advantages. Moreover, the proposed technique also adaptively cancels the deleterious effects of capacitor parasitic inductance, thereby providing much higher filter performance than is achievable in conventional designs. The new technique is experimentally demonstrated in a dc-dc power converter application and is shown to provide high performance
Keywords :
DC-DC power convertors; capacitors; inductance; magnetic circuits; magnetic devices; sensitivity; tuning; active control; adaptive inductance cancellation; capacitor parasitic inductance; couple-magnetic filter; dc-dc power application; filter sensitivity; filter shunt path; magnetic circuit; single magnetic component; Adaptive filters; Capacitors; Circuit optimization; Costs; Coupling circuits; Degradation; Inductance; Magnetic circuits; Magnetic separation; Output feedback; Automatic tuning; coupled inductor filter; integrated magnetics; zero-ripple filter;
Journal_Title :
Power Electronics, IEEE Transactions on
DOI :
10.1109/TPEL.2006.882975