DocumentCode :
818295
Title :
Damping margins of polynomials with perturbed coefficients
Author :
Soh, C.B. ; Berger, C.S.
Author_Institution :
Sch. of Electr. & Electron. Eng., Nanyang Tech. Inst., Singapore
Volume :
33
Issue :
5
fYear :
1988
fDate :
5/1/1988 12:00:00 AM
Firstpage :
509
Lastpage :
511
Abstract :
Considers the polynomial P(s)=t0 Sn+t1 Sn-1 +···+tn where 0<a jtjbj. Recently, V.L. Kharitonov (1978) derived a necessary and sufficient condition for this polynomial to have only zeros in the open left-half plane. Two lemmas are derived to investigate the existence of theorems similar to the theorem of Kharitonov. Using these lemmas, the theorem of Kharitonov is generalized for P(s) to have only zeros within a sector in the complex plane. The aperiodic case is also considered
Keywords :
polynomials; Kharitonov theorem; complex plane; damping margins; necessary conditions; perturbed coefficients; polynomials; sufficient condition; Character generation; Damping; Polynomials; Stability; Sufficient conditions;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/9.1242
Filename :
1242
Link To Document :
بازگشت