DocumentCode :
818648
Title :
Segmentation-Based MAP Despeckling of SAR Images in the Undecimated Wavelet Domain
Author :
Bianchi, Tiziano ; Argenti, Fabrizio ; Alparone, Luciano
Author_Institution :
Dipt. di Elettron. e Telecomun., Univ. di Firenze, Florence
Volume :
46
Issue :
9
fYear :
2008
Firstpage :
2728
Lastpage :
2742
Abstract :
In this paper, a novel despeckling algorithm based on undecimated wavelet decomposition and maximum a posteriori estimation is proposed. Such a method represents an improvement with respect to the filter presented by the authors, and it is based on the same conjecture that the probability density functions (pdfs) of the wavelet coefficients follow a generalized Gaussian (GG) distribution. However, the approach introduced here presents two major novelties: 1) theoretically exact expressions for the estimation of the GG parameters are derived: such expressions do not require further assumptions other than the multiplicative model with uncorrelated speckle, and hold also in the case of a strongly correlated reflectivity; 2) a model for the classification of the wavelet coefficients according to their texture energy is introduced. This model allows us to classify the wavelet coefficients into classes having different degrees of heterogeneity, so that ad hoc estimation approaches can be devised for the different sets of coefficients. Three different implementations, characterized by different approaches for incorporating into the filtering procedure the information deriving from the segmentation of the wavelet coefficients, are proposed. Experimental results, carried out on both artificially speckled images and true synthetic aperture radar images, demonstrate that the proposed filtering approach outperforms the previous filters, irrespective of the features of the underlying reflectivity.
Keywords :
Gaussian distribution; geophysical signal processing; image segmentation; maximum likelihood estimation; remote sensing by radar; speckle; MAP despeckling; SAR images; correlated reflectivity; despeckling algorithm; filtering procedure; generalized Gaussian distribution; image segmentation; maximum a posteriori estimation; multiplicative model; probability density functions; texture energy; true synthetic aperture radar images; uncorrelated speckle; undecimated wavelet decomposition; undecimated wavelet domain; wavelet coefficients; Despeckling; generalized Gaussian (GG) modeling; image segmentation; synthetic aperture radar (SAR); undecimated wavelet decomposition;
fLanguage :
English
Journal_Title :
Geoscience and Remote Sensing, IEEE Transactions on
Publisher :
ieee
ISSN :
0196-2892
Type :
jour
DOI :
10.1109/TGRS.2008.920018
Filename :
4579752
Link To Document :
بازگشت