DocumentCode :
819472
Title :
The numerical solution of X = A_{1}X + XA_{2} + D, X(0) = C
Author :
Davison, E.J.
Author_Institution :
University of Toronto, Toronto, Ontario, Canada
Volume :
20
Issue :
4
fYear :
1975
fDate :
8/1/1975 12:00:00 AM
Firstpage :
566
Lastpage :
567
Abstract :
The numerical solution of the general matrix differential equation \\dot{X} = A_{1}X + XA_{2} + D, X(0) = C for X is considered where A1and A2are stable matrices. The algorithm proposed requires only 8n^{2} words of memory (for large n ) and converges in approximately 50n^{3} \\mu s where μ is the multiplication time of the digital computer, and n = \\max (n_{1},n_{2}) where A_{1} \\in R^{n_{1} \\times n_{1}} , A_{2} \\in R^{n_{2} \\times n_{2}} . The algorithm is particularly suitable for systems where n is large (e.g, n \\gg 10 ).
Keywords :
Differential equations; Matrix equations; Numerical integration; Councils; Degradation; Differential equations; Drilling; Eigenvalues and eigenfunctions; Iterative algorithms; Matrices; Notice of Violation; Random variables; Upper bound;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.1975.1101033
Filename :
1101033
Link To Document :
بازگشت