DocumentCode :
81988
Title :
Uncensored Indoor Positioning
Author :
Mansour, Mohamed F. ; Waters, Deric W.
Author_Institution :
Embedded Syst. Lab., Texas Instrum. Inc., Dallas, TX, USA
Volume :
21
Issue :
7
fYear :
2014
fDate :
Jul-14
Firstpage :
824
Lastpage :
828
Abstract :
We present a new method to accommodate the unobserved access points in indoor positioning systems that use the Received Signal Strength (RSS). We formulate a probabilistic framework, and derive the estimation bounds that quantify the advantage of incorporating unobserved data. Further, we describe a realization for the maximum-likelihood estimator and establish its effectiveness in a typical indoor positioning scenario.
Keywords :
indoor radio; maximum likelihood estimation; probability; radionavigation; RSS; estimation bounds; maximum-likelihood estimator; probabilistic framework; received signal strength; uncensored indoor positioning system; unobserved access points; Channel models; Cramer-Rao bounds; Databases; Maximum likelihood estimation; Sensitivity; Vectors; Cramer-Rao bound; estimation; localization; maximum-likelihood; sensitivity; unobserved data;
fLanguage :
English
Journal_Title :
Signal Processing Letters, IEEE
Publisher :
ieee
ISSN :
1070-9908
Type :
jour
DOI :
10.1109/LSP.2014.2317787
Filename :
6799243
Link To Document :
بازگشت