DocumentCode
820348
Title
An intersection algorithm based on Delaunay triangulation
Author
Sugihara, Kokichi
Author_Institution
Dept. of Math. Eng. & Inf. Phys., Tokyo Univ., Japan
Volume
12
Issue
2
fYear
1992
fDate
3/1/1992 12:00:00 AM
Firstpage
59
Lastpage
67
Abstract
A robust method for finding points of intersection of line segments in a 2-D plane is presented. The plane is subdivided by Delaunay triangulation to localize areas where points of intersection exist and to guarantee the topological consistency of the resulting arrangement. The subdivision is refined by inserting midpoints recursively until the areas containing points of intersection are sufficiently localized. The method is robust in the sense that it does not miss points of intersection that are easily detectable when costly line-pair checking is performed. The algorithm is adaptive in the sense that most of the computational cost is incurred for the areas where finding points of intersection is difficult.<>
Keywords
computational geometry; computer graphics; 2D plane; Delaunay triangulation; computational cost; computer graphics; intersection algorithm; line segments; line-pair checking; points of intersection; topological consistency; Arithmetic; Computational efficiency; Robustness;
fLanguage
English
Journal_Title
Computer Graphics and Applications, IEEE
Publisher
ieee
ISSN
0272-1716
Type
jour
DOI
10.1109/38.124289
Filename
124289
Link To Document