DocumentCode :
820352
Title :
A comparison of two Hammerstein model identification algorithms
Author :
Gallman, Philip G.
Author_Institution :
University of Maryland, College Park, MD, USA
Volume :
21
Issue :
1
fYear :
1976
fDate :
2/1/1976 12:00:00 AM
Firstpage :
124
Lastpage :
126
Abstract :
Two algorithms for least-squares estimation of parameters of a Hammerstein model are compared. Numerical examples demonstrate that the iterative method of Narendra and Gallman produces significantly smaller parameter covariance and slightly smaller rms error than the noniterative method of Chang and Luus, as expected from an analysis of the parameter estimators. In addition, the iterative algorithm is faster for high-order systems.
Keywords :
Discrete-time systems, nonlinear; Least-squares estimation; Nonlinear systems, discrete-time; Parameter estimation; Asymptotic stability; Control systems; Controllability; Differential equations; Eigenvalues and eigenfunctions; Iterative algorithms; Matrices; Numerical models; Parameter estimation; State feedback;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.1976.1101123
Filename :
1101123
Link To Document :
بازگشت