DocumentCode :
821578
Title :
More A_{1}E+EA_{2}=-D and \\dot{X}=A_{1}X+XA_{2}+D,X(0)=C
Author :
Lacoss, R.T. ; Shakal, A.F.
Author_Institution :
Massachusetts Institute of Technology, Cambridge, MA, USA
Volume :
21
Issue :
3
fYear :
1976
fDate :
6/1/1976 12:00:00 AM
Firstpage :
405
Lastpage :
406
Abstract :
The solution of the real matrix equation A_{1}E + EA_{2} = - D is given in terms of the eigenvalues and eigenvectors of A_{1} \\in R^{{n}_{1} \\times n_{1}}, A_{2} \\in R^{n_{2} \\times n_{2}} , and the elements of D . The solution is valid if the Aiare symmetric or if they do not have repeated eigenvalues. The solution can be extended to handle nonsymmetric matrices with repeated eigenvalues. The solution of \\dot{X} = A_{1}X+XA_{2} + D, X(0) = C is also given in closed form for the case of nonrepeated eigenvalues or symmetric Ai.
Keywords :
Matrix equations; Numerical integration; Costs; Eigenvalues and eigenfunctions; Equations; Industrial plants; Laboratories; Metalworking machines; Optimal control; Q measurement; Sufficient conditions; Symmetric matrices;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.1976.1101249
Filename :
1101249
Link To Document :
بازگشت