DocumentCode :
822103
Title :
Prediction error identification methods for stationary stochastic processes
Author :
Caines, P.E.
Author_Institution :
University of Toronto, Toronto, Ontario, Canada
Volume :
21
Issue :
4
fYear :
1976
fDate :
8/1/1976 12:00:00 AM
Firstpage :
500
Lastpage :
505
Abstract :
The strong consistency of a general class of prediction error identification methods for stationary stochastic processes is demonstrated. In particular, the strong consistency of the maximum likelihood method for stationary Gaussian processes [4], [5] and of the quadratic loss prediction error method for stationary stochastic processes [1]-[3] follow as special cases of the general result.
Keywords :
Parameter estimation; Prediction methods; Stochastic processes; maximum-likelihood (ML) estimation; Filters; Gaussian processes; Least squares methods; Linear systems; Maximum likelihood estimation; Minimization methods; Parameter estimation; Stochastic processes; Stochastic systems; Yield estimation;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.1976.1101304
Filename :
1101304
Link To Document :
بازگشت